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On Percolation with Fibers or Layers
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We consider site percolation on Zd, directed edges going from any s # Zd to
s+A1 ,..., s+An , where A1 ,..., An are the same for all sites and at least two of
them are noncollinear. A site is closed if it belongs to p+Block, where p is a
point in a Poisson distribution in Rd

#Zd with a density % and Block=
[s # L : |s|�M ]+[s # Rd : |s|�\], where L is a linear subspace of Rd, | } | is
the Euclidean norm, \=max(|A1| ,..., |An | ) and M is a parameter. We study the
behavior of %*, the critical value, and P*closed , corresponding critical percentage
of closed sites, when M � �. Denote Rd�L the factor space. Call two nonzero
vectors U, V codirected if U=kV, where k>0. Theorem. If there are Ai and Aj

whose projections to Rd�L are not codirected, then %* �
� 1�M dim(L) and P*closed

remains separated both from 0 and 1 when M � �. If projections of all
A1 ,..., An to Rd�L are codirected, then %* �

� 1�M dim(L)+1 and P*closed
�
� 1�M when

M � �.
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It is often assumed in percolation theory that states of sites (or bonds) are
mutually independent. When percolation is used to describe properties of
materials, this assumption implies chaotic structure. However, some real
materials contain fibers or layers, which seems to imply long-distance
correlations along certain directions combined with no or much shorter
correlations across these directions. To take this possibility into account,
we study asymptotics of critical values in oriented site percolation on a
graph A, which has Zd as the set of sites, with a special distribution of
closed vs. open sites. Given several non-zero arrows A1 ,..., An # Zd, at least
two of which are non-collinear, directed edges of the graph A go from any
s # Zd to s+A1 ,..., s+An . Each site is either closed or open according to
the following random rule. We embed Zd into Rd with the same axes and
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use the Euclidean norm | } | and distance. Denote Ball=[s # Rd : |s|�1]
the unit ball in Rd. Given a linear subspace L of Rd and a positive
parameter M, the set Block/Rd is defined as the vector sum

Block=M } (Ball & L)+\ } Ball (1)

where \ is a large enough constant, say \=max( |A1|,..., |An | ). We define
the distribution of closed sites by the rule: A site is closed if and only if it
belongs to p+Block, where p is a point of a Poisson point distribution in
Rd with a density %. We call points of this distribution Poisson points.
As usual, the probability that there are k Poisson points in a measurable
set S/Rd equals e&% } vol(S) } (% } vol(S))k�k!, where vol(S) is the volume
(i.e., measure) of S.

Call a sequence of sites s1 ,..., sk , where k�1, a path from s1 to sk if
for every i=1,..., k&1 there is an edge from si to si+1 . A path is called
open if all its sites are open. A site t is called reachable from site s if there
is an open path from s to t. We say that there is percolation from site s to
� if the set of sites reachable from s is infinite. Since the probability of per-
colation to � is one and the same from all sites, we call it the percolation
probability and assume that percolation always starts at the origin. Also we
denote Pclosed(%) the percentage of closed sites. Since

Pclosed=1&e&% } vol(Block) (2)

Pclosed depends on % in the monotonic way, but the percolation probability
depends on % in the anti-monotonic way, it cannot increase when %
increases. Accordingly we denote %* the infimum of those values of %, for
which the percolation probability equals zero and P*closed=Pclosed(%*). It is
easy to prove that 0<%*<� and 0<P*closed<1 in all the situations con-
sidered here.

Our theorem describes the asymptotic behavior of %* and P*closed when
M � �, the arrows and L remaining the same. Values which do not
depend on M (but depend on arrows and L) are called constants or
parameters. For any functions F, G>0, F �� G means that const } G�F�
const } G, where both constants are positive. Denote dim( } ) dimension.
Denote Rd�L the factor space. Call two non-zero vectors U, V codirected
if U=kV, where k>0. Let us say that the ``along'' case takes place if there
are two arrows, whose projections to Rd�L are not codirected. The other
case, namely when projections of all the arrows to Rd�L are codirected, is
called the ``across'' case. For example, if we take d arrows equal to the unit
vectors directed along the axes of Zd and define L by an equation
k1 x1+ } } } +kdxd=0, where x1 ,..., xd are the coordinates, then we have the
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``across'' case if all k1 ,..., kd are positive or all of them are negative and the
``along'' case otherwise. Our main result is the following:

Theorem. In the ``along'' case %* �� 1�Mdim(L) and P*closed remains
separated both from 0 and 1 when M � �. In the ``across'' case %* ��

1�Mdim(L)+1 and P*closed
�� 1�M when M � �.

Since vol(Block) �� Mdim(L), (2) allows to deduce our estimations for
P*closed from those for %*, so it remains only to estimate %*.

With every site we associate a variable, which equals 1 if this site is
open and 0 if it is closed. This allows us to use the following well-known
partial order between normed measures on [0, 1]S, where S is any coun-
table set (see, e.g., in 1). Given two configurations x, y # [0, 1]S, we write
xOy or yox if xi� yi for all i # S. We call a real function f on [0, 1]S

monotonic if xO y O f (x)� f ( y). For any normed measures +, & on
[0, 1]S we write +O& or &o+ if � f d+�� f d& for any monotonic f.

We denote lin( } ) the linear hull and H=lin(A1 ,..., An) the linear hull
of the arrows. Of course, percolation from the origin depends only on the
states of sites in H. Let us explain how we can substitute the distribution
of open vs. closed sites defined above by another one, defined only on
Zd & H. Let us denote +(M, \, %) the distribution on [0, 1]Z d & H, corre-
sponding to the distribution defined above. Now let us define another dis-
tribution +$(M$, \$, %$) on [0, 1]Z d & H as follows: we denote

Block$=M$ } (Ball & L & V )+\$ } (Ball & V ) (3)

and declare a site in Zd & H closed if it belongs to ( p$+Block$), where p$
is a point of a Poisson distribution in H with a density %$. Then there are
positive constants C1 ,..., C6 such that

+(M, \, %)O+$(C1 } M, C2 } \, C3 } % } Mdim(L)&dim(L & H )) (4)

and

(M, \, %)o+$(C1 } M, C5 } \, C6 } % } Mdim(L)&dim(L & H )) (5)

for all M, \ and small enough %. Let us explain why (4) and (5) are true.
Let us call a point p # Rd relevant if p+Block intersects H.

First, let us reduce the general case to the case lin(L, H )=Rd. If
lin(L, H ){Rd, then all the relevant points are at a distance �const from
lin(L, H ), so we can substitute them by their orthogonal projections to
lin(L, H ) and thereby substitute the initial distribution on Zd & lin(L, H )
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by another one. If we denote these distributions &(M, \, %) and &$(M, \, %),
it is easy to prove that

&(const } M, const } \, const } %)O&$(M, \, %)O&(const } M, const } \, const } %)

with suitable positive constants.
Now let lin(L, H )=Rd. Then any shift of L intersects H, so for any p

we can call its projection proj( p) that point in ( p+L) & H, which is the
nearest to p. Then, if we substitute every relevant Poisson point by its pro-
jection, we obtain a Poisson distribution on H with a density %$=const } % }
Mdim(L)&dim(L & H ). Also let us denote dist( p) the distance from p to H.

Now, to prove (4), it is sufficient to observe that there is a positive
constant Cfar such that if dist( p)>Cfar } M then p is irrelevant and if dist( p)
�Cfar } M then ( p+Block) & H is covered by proj( p)+Block$ where
Block$ is defined by (3) with M$=const } M and \$=const } \ with large
enough constants.

To prove (5), observe that there is a positive constant Cnear such that
if dist( p)�Cnear } M, then the intersection ( p+Block) & H includes proj( p)
+Block$ where Block$ is defined by (3) with M$=const } M and \$=
const } \ with small enough positive constants.

Upper Estimation in the ``Along'' Case. (The assumption that this
is the ``along'' case is not actually used here.) Let us assume that % } Mdim(L)

exceeds a large enough parameter * and prove that the probability of per-
colation equals 0 for all M�const. Choose a basis B1 ,..., Bdim(L) in L and
complement it by Bdim(L)+1 ,..., Bd to obtain a basis B1 ,..., Bd in Rd. For
every y=( y1 ,..., yd) # Zd we define

cloud( y)=: \M } :
dim(L)

i=1

y i } Bi+ :
d

i=dim(L)+1

yi } Bi++ 1
2 } Block

where : is a positive parameter. We call these sets clouds and choose : so
small that the union of clouds covers Rd. We call a cloud open if it contains
at least one open site and closed otherwise. Notice that if a cloud contains
a Poisson point p, it is completely covered by p+Block and therefore
closed. Also notice that there is a constant C0 such that no point belongs
to more that C0 different clouds. Since volumes of all clouds equal
vol(1�2 } Block), which we denote V0 , the volume of a union of r different
clouds is not less than V0 } r�C0 . Since V0

�� Mdim(L), the probability that r
different clouds are open does not exceed e&% } V0 } r�C0�(e&const } *)r, where
the constant is positive. Now suppose that there is percolation, that is there
is an infinite open path starting at the origin. Taking a long enough piece

432 Toom



of this path and substituting every site in this path by some cloud con-
taining it, we get a sequence of open clouds. If two terms of this sequence
coincide, we delete one of them and all the terms between them. Repeating
this deleting while it is possible, we obtain another sequence of open
clouds, in which all the terms are different. For any cloud in this sequence
the next cloud can be chosen only out of a constant of different ones. Thus
the probability that there is a sequence of this sort does not exceed (const }
e&const } *)r, where r is the number of terms, which can be made arbitrarily
large. This expression tends to zero when r � � provided * is large
enough. K

Upper Estimation in the ``Across'' Case. Let us assume that
% } Mdim(L)+1 exceeds a large enough parameter * and prove that the prob-
ability of percolation equals 0 for all M�const. The inequality (4) allows
us to concentrate on H, having a site closed if it belongs to p+Block$,
where Block$ is defined by (3) and p is a point of a Poisson distribution on
H with the density %$=const } % } Mdim(L)&dim(L & H ). Now we call points of
this distribution Poisson points. Since projections of all the arrows to Rd�L
are codirected, dim(L & H )=dim(H )&1. Let us choose any basis
B1 ,..., Bdim(H)&1 in L & H and then denote Bdim(H) that normed vector
orthogonal to L & H, whose projection to Rd�L is codirected with projec-
tions of all the arrows. Thus B1 ,..., Bdim(H ) is a basis in H. For every
y=( y1 ,..., ydim(H)) # Zdim(H ) we define:

center( y)=: } M$ } :
dim(H )

i=1

( y i } Bi)

= (6)cloud( y)=center( y)+ 1
8 } Block$+ .

0�x�;

(x } M$ } Bdim(H ))

screen( y)=cloud( y)+2; } M$ } Bdim(H )

where : and ; are positive parameters to be chosen later. Let us call a site
free if there is an open path from this site to � and call a cloud free if it
contains at least one free site. Let us explain why, choosing the constant ;
small enough, we can assure that if a screen contains at least one Poisson
point, then the corresponding cloud cannot be free. Any p # H can be
decomposed into a sum p=l( p)+m( p) } Bdim(H ) , where l( p) # L _ H and
m( p) # R. Notice that m(Ai)>0 for all Ai and denote

m0=max
i

m(Ai) and T=max
i

|l(Ai)|
m(Ai)

Now assume that M$ is large enough, that there is a Poisson point
p # screen( y) and at the same time there is an infinite open path s0 , s1 , s2 ,...
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starting at some site s0 # cloud( y) and come to a contradiction. From (6)
m( p)�m(s0). As we go along our path, the value of m(si) strictly increases
at every step at most by m0 . So there is i such that

|m(si)&m( p)|�m0 (7)

whence

|l(si)&l( p)|�|l(s0)&l( p)|+|l(si)&l(s0)|

�|l(s0)&l( p)|+T } |m(si)&m(s0)|

Also note that |l(s0)&l( p)|�M$�2. Since

m(si)&m(s0)�m0+m( p)&m(s0)�m0+3;M$

we conclude that l(si)&l(s0)�T } (m0+3;M$). Therefore

|l(si)&l( p)|�|l(s0)&(l( p)|+|l(si)&l(s0)|�M$�2+T } (m0+3;M$)

We can choose ;>0 so small that the last expression is less than M$. This
and (7) are sufficient to have si # p+Block$, which provides the contradic-
tion we sought. After that we choose : so small that the union of clouds
covers H. Let us denote V0 the volume of a screen and note that
V0 �� Mdim(H). Since there is a constant C0 such that no point belongs to
more than C0 different screens, the volume of a union of r different screens
is not less than const } V0 } r�C0 . Since %$ } Mdim(H )>const } *, the proba-
bility that r different clouds are free does not exceed e&const } %$ } V0 } r�C0�
(e&const } *)r where all the constants are positive. Then we argue like in the
``along'' case, only speak of free, rather than open, clouds.

Now we go to the lower estimations. Denote Q the graph with the set
of vertices Z2=[(x, y) : x, y # Z] in which two oriented bonds go from
every vertex (x, y) to (x+1, y) and (x, y+1). We shall use the following
fact(2, 1) formulated here as a lemma:

Lemma. There is =>0, e.g. ==1�20, such that the probability of
oriented site percolation in Q from the origin to � is positive provided the
following: for any r sites the probability that all of them are closed does not
exceed =r.

Lower Estimation in the ``Along'' Case. Let us assume that
% } Mdim(L) is less than a small enough positive parameter * and prove that
the probability of percolation in A from the origin to � is positive for all
M�const. We choose two non-collinear arrows, say A1 and A2 , whose
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projections to Rd�L are not codirected, reduce our attention to the sub-
graph of A generated by them, and prove that the probability of percola-
tion for M large enough is positive even on this subgraph. This subgraph
is isomorphic with Q, which allows us to use the lemma. Due to (5), we
may assume that the Poisson distribution is given only on this subgraph,
which we now call A, and that d=2 and there are only two arrows A1 and
A2 from the very beginning. Therefore the only possible values for dim(L)
are 0, 1 and 2. The case dim(L)=0 is easy, actually it is the ``classical'' case
without long-range correlations. Thus we consider three cases.

Case (a). dim(L)=1 and both A1 and A2 do not belong to L. Since
the projections of A1 and A2 to R2�L are not codirected, they have opposite
signs. We set B1 equal to that normed vector in L, which can be repre-
sented as a linear combination of A1 and A2 with positive coefficients. Then
we define center( y)=: } (M } y1 } B1+ y2 } A2) for all y=( y1 , y2) # Z2.

Case (b). dim(L)=1 and A1 belongs to L, but A2 does not. In this
case center( y)=: } (M } y1 } A1+ y2 } A2) for all y=( y1 , y2) # Z2.

Case (c). dim(L)=2. In this case center( y)=: } M( y1 } A1+ y2 } A2)
for all y=( y1 , y2) # Z2.

In all these cases we define cloud( y)=center( y)+; } Block and
screen( y)=center( y)+2; } Block. Screens are defined so that if a cloud is
closed, the corresponding screen contains at least one Poisson point.

For any p # R2 we denote [ p] # Z2 that point, whose coordinates are
integer parts of the respective coordinates of p. In each case we form an
oriented graph G with Z2 as the set of vertices, in which an oriented bond
goes from y to y$ if there is a path in A from [center( y)] to [center( y$)],
all the terms of which belong to cloud( y) _ cloud( y$). We declare a cloud
and the corresponding site of G open if all the sites of A belonging to this
cloud are open; otherwise both are closed. Due to these definitions, if there
is percolation in G from the origin to �, then there is percolation in A

from the origin to � also.
In all the three cases we choose first : and then ; so large that the

clouds cover all R2 and at least two bonds go from any vertex y=( y1 , y2)
of G to ( y1+1, y2) and ( y1 , y2+1), and in result G has a subgraph
isomorphic with Q.

Since the area of any screen is �� M, the probability that a screen
contains at least one Poisson point does not exceed 1&e&const } %M�
1&e&const } *. Since there is a constant C0 such that no point belongs to
more than C0 screens, for any r screens the probability that each of them
contains at least one Poisson point does not exceed ,r, where ,=
(1&e&const } *)1�C0. Therefore for any r clouds the probability that all of
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them are closed also does not exceed ,r. Hence, from the lemma, the prob-
ability of percolation in G from the origin to � is positive as soon as
,<1�20, which is true for * small enough. Therefore the probability of
percolation in A also is positive. K

Lower Estimation in the ``Across'' Case. Here we assume that
% } Mdim(L)+1 is less than a small enough positive parameter * and prove
that the probability of percolation in A from the origin to � is positive
for all M�const. In this case we choose any two non-collinear arrows, call
them A1 and A2 , reduce attention to the subgraph generated by them and
prove that the probability of percolation is positive even there for M large
enough. The argument is practically the same as in the case (c) of the
``along'' case. K

Note. Percolation is sometimes used to model destruction of
materials. In this connection the statement of our theorem in the ``across''
case presents a theoretical possibility of greater robustness than one might
expect: the material as a whole does not collapse even when almost all (i.e.,
all except const�M ) of its elements are destroyed. This phenomenon is
more general than that particular distribution which is used here. There are
other ways to define a distribution of closed sites (or closed bonds) with
strong correlations along a certain subspace L and weak correlations
across it, in which the asymptotic behavior of P*closed is the same as stated
here. one of these ways is to use the same definition (1), but let a site open
(rather than closed) if it belongs to ( p+Block), where p is a point in a
Poisson distribution in Rd

#Zd with a density %. (In this case both the per-
colation probability and Pclosed depend on % in the monotonic way: they
cannot decrease when %increases.) Then all the statements of our theorem
remain true with one exception: in the ``across'' case %* �� ln M�Mdim(L).

A similar phenomenon has been described for the multiscale non-
oriented percolation; see the chapter ``Multiscale Percolation Schemes'' in
the survey 3.
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